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A Python package for deep learning and fast machine learning analysis of MS/MS database search results.
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CHAPTER

ONE

KEY FEATURES

ProteoTorch accepts as input a Percolator INput (PIN) file containing target/decoy PSM features. By default, several
iterations of deep semi-supervised learning are then performed to classify target and decoy PSMs, and the output PSM
scores are recalibrated using the resulting learned parameters.

ProteoTorch provides the following semi-supervised machine learning classifiers:

• Deep neural networks

• Fast Linear SVMs using the L2-SVM-MFN algorithm (equivalent to the recently sped-up Percolator algorithm)

• Linear SVMs using the TRON algorithm (equivalent to these Percolator speedups)

• Linear Discriminant Analysis (+ Gaussian Mixture Models, in development)

• Support to easily swap in any supervised classifier implemented in Python which follow the design of scikit-
learn clf object instances, with training function fit and testing function decision_function

3
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https://pubs.acs.org/doi/10.1021/acs.jproteome.7b00767
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CHAPTER

TWO

ADDITIONAL FEATURES

ProteoTorch provides an ultrafast q-value library (heavily optimized for Python), plotting tools to benchmark/compare
MS/MS post-processor results, and an easy-to-use Python API for the MS/MS semi-supervised learning algorithm
(with cross-validation) originally implemented in the C++ package Percolator.
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CHAPTER

THREE

CONTENTS

3.1 Install

ProteoTorch may be downloaded and installed using:

git clone https://github.com/proteoTorch/proteoTorch.git
cd proteoTorch
python3 setup.py build
python3 setup.py install

3.1.1 Dependencies

ProteoTorch depends on the following packages:

• PyTorch

• scikit-learn

• numpy

• cython (optional, but highly recommended to build fully sped up q-value library)

• matplotlib (optional, but required for plotting utilities)

3.2 Quickstart

Here, we briefly describe post-processing a PIN file, test.pin, using a deep neural network (DNN) as the classifier
during semi-supervised learning.

3.2.1 Recalibrating PSMs

After installation, the main ProteoTorch module, analyze, may be run from the command line using:

proteoTorch --pin test.pin --output_dir testOutput --method 3 --numThreads 10

In the above, --method specifies a DNN classifier, --output_dir specifies the directory to write results to, and --
numThreads specifies the number of CPU threads to use for all parallelizable ProteoTorch computation (discussed
further in the next section).

When finished, the recalibrated PSM scores will be written to the tab-delimited file testOutput/output.txt. The first few
lines of an example output file are:
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https://matplotlib.org/
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PSMId score q-value peptide Label proteinIds
target_0_6395_3_1 0.999988 0.385129 K.
→˓IDSAAETHADAPVVDASPAEDQASEVTEAPHVESAK.S 1 F52H3.7a
target_0_8821_3_1 0.999975 0.385129 R.LHCTAQPMPDGLADDIEGGTVNAR.D
→˓ 1 F25H5.4
target_0_10580_2_1 0.999968 0.385129 K.LANALEPGAVEVAAAEENADAAAQK.E
→˓ 1 C10G11.7
target_0_16058_2_1 0.999959 0.385129 K.TVDVISDTGTSFLGGPQSVVDGLAK.A
→˓ 1 F21F8.7
target_0_17089_2_1 0.999956 0.385129 K.HTDAVAELTDQLDQLNK.A 1
→˓ F11C3.3
target_0_16837_2_1 0.999955 0.385129 K.HTDAVAELTDQLDQLNK.A 1
→˓ F11C3.3
target_0_27067_3_1 0.999952 0.385129 R.
→˓FQSSAVMALQEAAEAYLVGLFEDTNLCAIHAK.R 1 ZK131.3
target_0_15165_2_1 0.999945 0.385129 R.NLQIAQGTPGGLITYGAIDTVNCAK.Q
→˓ 1 Y39B6A.20
target_0_17414_2_1 0.999943 0.385129 K.VTLEDQIVQTNPVLEAFGNAK.T
→˓ 1 F11C3.3

Further analysis options are discussed in the next section.

3.2.2 Q-value analysis plots

Resulting PSM identifications vs q-values may be easily plotted and compared against other methods. Assuming
test.pin has feature XCorr specified in its header, the following may be run on the command line to plot target-decoy
competition (TDC) results for both recalibrated ProteoTorch scores and the uncalibrated XCorr scores:

proteoTorchPlot --output test.pdf --maxq 0.1 \
--tdc --dataset test.pin \
"ProteoTorch DNN":"score":output_dir/output.txt \
"XCorr":'XCorr':test.pin

In the above, --output specifies the resulting plot file name (and format), --maxq specifies the maximum q-value
threshold to plot, --tdc runs TDC for all methods, and tab-delimited PSM files are specified by the triple method:header
field:PSM file. Note that, when TDC is specified, the original pin file must be specified using --dataset to properly
calculate the experimental mass, scan number identifiers for each PSM.

Further details and examples are discussed on the plotting page.
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3.3 Analysis options

The analysis source is provided in the module proteoTorch.analyze. Available options are listed below.

3.3.1 Main Options

The following is a list of post-processing options when calling proteoTorch from the command line.

• --pin: input file in PIN format

• --method: machine learning classifier to use during semi-supervised learning

– Method 0: LDA

– Method 1: linear SVM, solver TRON

– Method 2: linear SVM, solver L2-SVM-MFN (Percolator’s solver)

– Method 3: DNN (deep multi-layer perceptron, default value)

• --output_dir: where to write result files. Default = model_output/<data_file_name>/<time_stamp>/

• --tdc: Use target-decoy competition to assign q-values (true/false). Default = true/

• --numThreads: Number of CPU threads to use for parallelizable computations. Default = 1)

• --initDirection: If >= 0, specifies which feature to use as initial PSM scores during semi-supervised learning. If
= -1, automatically find and use the most discriminative feature. Default = -1

• --q: q-value tolerance when estimating positive training samples. Default = 0.01

• --verbose: Verbosity. Default = 1

• --output_per_iter_granularity: Specifies number of iterations to write recalibrated PSM scores. Default = 5

• --write_output_per_iter: Write recalibrated PSM scores after every output_per_iter_granularity iterations
(true/false). Default = true

• --maxIters: Number of semi-supervised learning iterations to run. Default = 20

• --seed: Random seed when partitioning PSMs into cross-validation bins. Default = 1

3.3.2 Deep learning options

• --dnn_optimizer: DNN training algorithm to use (sgd or Adam). Default = Adam

• --dnn_num_epochs: Number of epochs to train DNN. Default = 50

• --deepq: DNN q-value tolerance when estimating positive training samples. Default = 0.07

• --dnn_lr: DNN learning rate. Default = 0.001

• --dnn_lr_decay: Reduce learning rate by this total for all epochs (dnn_lr_decay / dnn_num_epochs applied after
each epoch). Default = 0.02

• --dnn_num_layers: Number of hidden DNN layers. Default = 3

• --dnn_layer_size: Number of neurons per hidden layer. Default = 200

• --starting_dropout_rate: Dropout rate for first iteration. Default = 0.5

• --dnn_dropout_rate: Dropout rate for iterations > 1. Default = 0.0

3.3. Analysis options 9
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• --dnn_gpu_id: GPU ID to use for the DNN model (will switch to CPU mode if no GPU is found or CUDA is
not installed). Default = 0

• --dnn_label_smoothing_0: Label smoothing for training class 0 (decoys). Default = 0.99

• --dnn_label_smoothing_1: Label smoothing for training class 1 (targets within q-value tolerance). Default =
0.99

• --dnn_train_qtol: AUC q-value tolerance to measure validation performance. Default = 0.1

• --false_positive_loss_factor: Multiplicative factor to weight false positives during training. Default = 4.0

• --deepInitDirection: Produce initial PSM scores by training a large ensemble DNN to speed up training conver-
gence (true/false). Default = true if method=3

• --deep_direction_ensemble: Number of DNN ensembles to train during deep initial direction search. Default =
30

• --load_previous_dnn: Start iterations from previously saved model (boolean). Default = false

• --previous_dnn_dir: Previous output directory containing trained dnn weights.

3.3.3 Note on parallelization

Within each iteration of the algorithm, nested cross-validation (CV) is performed. If a DNN classifier is selected
(i.e., --method 3), the CV folds are run sequentially. This safeguards against the GPU running out of memory and
ProteoTorch crashing during analysis.

When an SVM is selected (i.e., --method 2 or --method 3), the CV folds are run in parallel using the number of CPU
threads specified by --numThreads.

3.4 Plot Utilities

3.4.1 Plotting # of identifications vs q-values

As discussed in the quickstart, # identifications vs q-value plots are available after installation by calling proteoTorch-
Plot. Options include

• --output: Output file name where the figure will be stored. Default = figure.png

• --maxq: Maximum q-value to plot to: 0 < q <= 1.0. Default = 0.1

• --tdc: Perform target-decoy competition (true/false). Default = true

• --dataset: PIN process which was analyze (only necessary if tdc = true).

• --writeTdcResults: Write the results of TDC for all methods to new files (true/false). Default = false

• --tdcOutputDir: Output directory to write TDC competition results. Default = ‘’

• --publish: Apply plot settings from ProteoTorch paper (true/false). Default = false

Furhter details are available in the source, module proteoTorch.plotQvals.

10 Chapter 3. Contents
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Specifying PSM score files

General tab-delimited files are passed to proteoTorchPlot as triples method:score header field:PSM file, where method
specifies the legend name, score header field specifies the header column name to use as PSM scores, and PSM file is
the tab-delimited file name. The input file must contain header fields:

• score header field - column of PSM scores to compute q-values with

• PSMId - unique PSM IDs used in the analyzed PIN file

• Label - whether a PSM is a target (1) or decoy (-1)

If target and decoy results are separated into two tab-delimited files, these may be passed in as the a quartet method:
header field:target file: decoy file. In this case, the column Label does not need to be specified.

As an example, the following plots ProteoTorch and Percolator recalibrated scores for PSMs collected searching a draft
of the human proteome dataset using the recently developed high-res MS2 p-value score function, residue-evidence
combined p-value:

proteoTorchPlot --output kim_resev.png --maxq 0.1 \
--tdc true --dataset kim_resev.pin --publish true \
"ProteoTorch DNN":"score":output_dir/output.txt \
"Percolator":'score':kim_resev_percolator.targets.txt:kim_resev_percolator.decoys.

→˓txt \
"NegLog10CombinePValue":'NegLog10CombinePValue':kim_resev.pin

resulting in the plot below.

3.4. Plot Utilities 11
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Note that, when TDC is specified, ProteoTorch generally uses the unique keys in header column PSMId to map PSMs
to the (experimental mass, scan number) pairs specified in the original PIN file. However, if method is specified as one
of {‘PeptideProphet’, ‘Scavager’, ‘q-ranker’}, it is assumed that experimental mass and scan number are explicitly
provided (with respective header fields ExpMass and ScanNr) due to potential nonconformity of the supplied PSMId
with these methods.

3.4.2 Histograms

The following python script shows how to import proteoTorch plotting tools to quickly create a plot of recalibrated
target and decoy scores. PSMs were originally collected searching a dataset of SARS-CoV-2 Proteins collected from
COVID-19 patiens using the Comet search engine:

from math import log
from proteoTorch.plotQvals import load_pin_scores, histogram

filename= 'output_dir/output.txt'
scoreKey = 'score'

# load ProteoTorch output
scores, labels, _ = load_pin_scores(filename, scoreKey)

targets = [log(s) for s,l in zip(scores, labels) if l == 1]
decoys = [log(s) for s,l in zip(scores, labels) if l == -1]

output = 'ihling_comet_proteoTorchDnn_hist.png'

histogram(targets, decoys, output, bins = 200)

which generates the plot below.
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3.5 Contact

ProteoTorch was developed by John Halloran (@UC Davis), Gregor Urban (@UCI), and Pierre Baldi (@UCI).

More information is available in the official github repo.

Please send questions to jthalloran@ucdavis.edu.

3.5.1 Citation

When using ProteoTorch please cite the following manuscript:

John Halloran, Gregor Urban, David Rocke, and Pierre Baldi. “Deep Semi-Supervised Learning Improves Universal
Peptide Identification of Shotgun Proteomics Data.” bioRxiv (2020) doi: 10.1101/2020.11.12.380881
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